加入收藏 | 设为首页 | 会员中心 | 我要投稿 广安站长网 (https://www.0826zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 动态 > 正文

用 JS 一次获取 HTML 表单的所有字段

发布时间:2021-02-10 15:01:51 所属栏目:动态 来源:互联网
导读:数据科学项目的关键是与涉众交流洞察力,而可视化是实现这一目的的很好的工具。 第26天到第35天:统计、实现和用例 下一个要讨论的重要主题是统计学,探索常用的描述性统计技术,如平均值、中位数、众数、范围分析、标准差和方差。 然后介绍一些更深层次的技

数据科学项目的关键是与涉众交流洞察力,而可视化是实现这一目的的很好的工具。

第26天到第35天:统计、实现和用例

下一个要讨论的重要主题是统计学,探索常用的描述性统计技术,如平均值、中位数、众数、范围分析、标准差和方差。

然后介绍一些更深层次的技术,比如识别数据集中的异常值和测量误差范围。

作为探索各种统计测试(如下所示)的最后一步,了解这些统计测试在现实生活中的应用:

  • F-test 

  • ANOVA 

  • 卡方测试

  • T-Test

  • Z-Test 

第36天到第40天:用于数据分析的SQL

现在是学习SQL的时候了,这很重要,因为在大多数企业用例中,数据将存储在数据库中,了解SQL将极大地帮助从系统中查询所需的数据进行分析。

您可以先安装一个开源数据库,比如MySQL,它会附带一些默认数据库,只需要处理数据并学习SQL。如果你能集中学习以下内容,那就太好了:

  • 从表中选择数据

  • 基于键连接来自不同表的数据

  • 对数据执行分组和聚合功能

  • 使用case语句和筛选条件

第41 - 50天:探索性数据分析(EDA)

在任何数据科学项目中,大约80%的时间用于此活动,因此最好花时间彻底学习此主题。为了学习探索性数据分析,这里不涉及一组特定的功能或主题,但是数据集和用例将驱动分析。因此,最好使用一些来自kaggle中主办的比赛的样本数据集,学习如何执行探索性分析。
 

第8天到第17天: Pandas 库

了解 Pandas 库,在 Pandas 中需要了解的一些主题是:

  • 创建数据帧,从文件读取数据,并将数据帧写入文件

  • 从数据框架中索引和选择数据

  • 迭代和排序

  • 聚合和分组

  • 缺失值和缺失值的处理

  • Pandas 的重命名和替换

  • 在数据帧中连接、合并和连接

  • 总结分析,交叉表格,和枢轴

  • 数据,分类和稀疏数据

花10天时间彻底学习以上主题,因为这些主题在执行探索性数据分析时非常有用。在介绍这些主题时,请尝试深入粒度细节,比如理解合并和连接、交叉表和枢轴之间的差异,这样不仅可以了解它们中的每一个,还可以知道在何时和何处使用它们。

我为什么要学 Pandas?如果您从事任何数据科学项目,它们总是从探索性数据分析开始,以便更好地理解数据,而您在 Pandas 中介绍的这些主题将会派上用场。另外,因为Pandas有助于从不同的来源和格式读取数据,所以它们速度快、效率高,还提供了对数据集执行各种操作的简单功能。

第18天到第22天:Numpy Library

学会 Pandas 之后,下一个需要学习的重要库是Numpy。学习Numpy的原因是与List相比它们非常快。在Numpy中要涉及的主题包括:

  • 数组的创建

  • 索引和切片

  • 数据类型

  • 连接与分离

  • 搜索和排序

  • 过滤所需的数据元素

为什么学习Numpy很重要?Numpy能够以快速和高效的方式对数据执行科学操作。它支持机器学习算法中常用的高效矩阵运算,panda库也广泛使用了Numpy。

第23天到第25天:可视化

现在,我们需要花一些时间来理解和使用一些关键的可视化库,比如ggplot、Plotly和Seaborn。使用示例数据集并尝试不同的可视化,如柱状图、线形/趋势图、盒状图、散点图、热图、饼状图、柱状图、气泡图和其他有趣的或交互式可视化。

(编辑:广安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读