加入收藏 | 设为首页 | 会员中心 | 我要投稿 广安站长网 (https://www.0826zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

不要对大龄程序员有偏见!

发布时间:2021-02-01 15:08:02 所属栏目:外闻 来源:互联网
导读:然而,最近谷歌公司使用AlphaGo Zero(一种完全随机游戏的系统)改进了训练过程,然后从结果中学习。Google DeepMind公司首席执行官Demis Hassabis表示,还将推出新版本的AlphaGo Zero,该版本已经掌握如何下国际象棋的游戏。 人工智能技术不断实现新的里程碑

然而,最近谷歌公司使用AlphaGo Zero(一种“完全随机”游戏的系统)改进了训练过程,然后从结果中学习。Google DeepMind公司首席执行官Demis Hassabis表示,还将推出新版本的AlphaGo Zero,该版本已经掌握如何下国际象棋的游戏。

人工智能技术不断实现新的里程碑:OpenAI训练的人工智能系统在在线多人游戏Dota 2的一对一比赛中击败了世界顶级玩家。

2020年,人工智能系统似乎获得了像人类一样写作和交谈的能力,其中包括人们可以想到的任何话题。

这个系统名为Generative Pre-training Transformer 3,简称GPT-3,是一个神经网络,它使用开放式网络上数十亿篇英语文章进行训练。

在OpenAI对其进行测试后不久,人们就开始对GPT-3的能力产生兴趣,其能力几乎可以生成涉及该主题的任何文章,这些文章乍一看往往很难与人类撰写的文章区分开来。类似的结果也出现在其他领域,它能够令人信服地回答广泛主题的问题。

但是,尽管许多GPT-3生成的文章具有真实感,但进一步的测试发现,其生成的句子并不符合要求,提供表面上看似合理但混乱的陈述,有时甚至是胡言乱语。

人们对使用模型的自然语言理解作为未来服务的基础仍有相当大的兴趣,并且可以选择开发人员通过OpenAI的beta API来构建软件。它还将被纳入未来通过微软的Azure云平台提供的服务中。

人工智能潜力最显著的例子可能是在2020年末,基于Google关注的神经网络AlphaFold 2证明了这一结果。

该系统可以查看蛋白质组成部分(氨基酸)的能力,并得出了蛋白质的3D结构可能对疾病的理解和药物开发的速度产生深远影响的结论。在蛋白质结构预测的关键评估竞赛中,AlphaFold 2能够以与晶体学相媲美的准确性确定蛋白质的3D结构,而晶体学是令人信服地对蛋白质建模的黄金标准。

与需要数月才能获得结果的晶体学不同,AlphaFold 2可以在数小时内对蛋白质进行建模。蛋白质的3D结构在人类生物学和疾病中起着如此重要的作用,这种加速已被预示为医学界的里程碑式突破,更不用说在生物技术中使用酶的其他领域中的潜在应用。

什么是机器学习?

事实上,到目前为止提到的所有成就都来自机器学习,机器学习是人工智能的一个子集,近年来在该领域取得的成就占了绝大多数。如今人们谈论人工智能时,通常都是在谈论机器学习。

简而言之,当前的机器学习技术正在实现某种复兴,简单来说,机器学习是计算机系统学习如何执行任务的方法,而不是通过编程来了解如何执行任务的方法。对机器学习的描述可以追溯到1959年,当时它是该领域的先驱Arthur Samuel发明的,他开发了世界上第一个自学习系统之一,即Samuel 跳棋程序。

为了自学习,这些系统被输入大量的数据,然后用这些数据来学习如何执行特定的任务,例如理解语音或为照片添加说明。这个数据集的质量和大小对于建立一个能够准确执行其指定任务的系统非常重要。例如,如果正在构建一个机器学习系统来预测房价,那么培训数据应不仅仅包括房地产面积,还应包括其他显著因素,如卧室数量或花园面积。

什么是神经网络?

机器学习成功的关键是神经网络。这些数学模型能够调整内部参数以更改其输出。在训练期间,向神经网络馈送数据集,该数据集教给它一些特定数据时应该输出的内容。具体来说,可能会向网络馈送介于0到9之间的数字的灰度图像以及一串二进制数字(0和1),这些二进制数字指示每个灰度图像中显示了哪个数字。然后将对网络进行训练,调整其内部参数,直到以高准确度对每个图像中显示的数字进行分类。然后,可以使用这个经过训练的神经网络对0到9之间数字的其他灰度图像进行分类。1989年,Yann LeCun发表了一篇论文展示了神经网络的应用,美国邮政局已经采用神经网络技术识别手写的邮政编码。

(编辑:广安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读