加入收藏 | 设为首页 | 会员中心 | 我要投稿 广安站长网 (https://www.0826zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

Android 主线程崩溃与子线程崩溃有什么本质区别?

发布时间:2021-02-01 15:06:58 所属栏目:外闻 来源:互联网
导读:神经网络的结构和功能基于大脑中神经元之间非常松散的联系。神经网络由互连的算法层组成,这些算法层将数据相互馈送,并且可以通过修改数据在这些层之间传递时的重要性来进行训练,以执行特定任务。在训练这些神经网络的过程中,当数据在各层之间传递时,附

神经网络的结构和功能基于大脑中神经元之间非常松散的联系。神经网络由互连的算法层组成,这些算法层将数据相互馈送,并且可以通过修改数据在这些层之间传递时的重要性来进行训练,以执行特定任务。在训练这些神经网络的过程中,当数据在各层之间传递时,附加在数据上的权重将会不断变化,直到神经网络的输出非常接近期望值,此时神经网络将“学习”如何执行特定任务。期望的输出可以是从正确地标记图像中的水果到根据其传感器数据预测电梯何时可能发生故障的任何事情。

机器学习的一个子集是深度学习,在深度学习中,神经网络被扩展成具有大量多层网络,这些网络使用大量的数据进行训练。正是这些深度神经网络推动了计算机执行语音识别和计算机视觉等任务的能力的当前飞跃。

神经网络有多种类型,各有优缺点。递归神经网络(RNN)是一种特别适合于自然语言处理(NLP)的神经网络,它可以理解文本和语音识别的含义,而卷积神经网络则植根于图像识别,其用途与推荐系统和自然语言处理(NLP)一样多样。神经网络的设计也在不断发展,研究人员改进了一种更有效的深度神经网络形式,称为长短期记忆(简称LSTM),这是一种用于自然语言处理(NLP)等任务和预测股市的递归神经网络(RNN)构,使其运行速度足够快,可以在谷歌翻译等按需系统中使用。

其他类型的人工智能有哪些?

人工智能研究的另一个领域是进化计算,它借鉴了达尔文的自然选择理论,并发现遗传算法经历了几代人之间的随机变异和组合,从而试图发展出针对给定问题的最佳解决方案。

这种方法甚至被用来帮助设计人工智能模型,有效地利用人工智能来帮助构建人工智能。这种使用进化算法来优化神经网络的方法被称为神经进化,随着智能系统的使用越来越普遍,特别是对数据科学家的需求往往供不应求的情况下,在帮助设计高效的人工智能方面可以发挥重要作用。Uber公司的人工智能实验室展示了这项技术,该实验室发表了关于使用遗传算法训练深层神经网络以解决强化学习问题的论文。

此外还有专家系统,在这种系统中,计算机被编入规则,允许它们根据大量输入做出一系列决定,使计算机能够模仿人类专家在特定领域的行为。驾驶飞机的自动驾驶系统就是这些基于专家系统的一个例子。

是什么推动了人工智能的复兴?

如上所述,近年来,人工智能研究的最大突破是机器学习领域,尤其是在深度学习领域。

这在某种程度上是由于数据的易用性驱动的,而更重要的是,并行计算能力的爆炸式增长,在此期间,越来越多的图形处理单元(GPU)集群用于训练机器学习系统。

这些集群不仅为训练机器学习模型提供了功能强大得多的系统,而且它们现在作为云服务在互联网上广泛使用。随着时间的推移,全球主要的科技公司(如谷歌、微软和特斯拉)已经开始使用专门为运行和培训的机器学习模式量身定做的芯片。

谷歌公司的Tensor Processing Unit(TPU)就是这些定制芯片的一个例子,它的最新版本加快了使用谷歌TensorFlow软件库构建的有用机器学习模型从数据中推断信息的速度,以及它们接受训练的速度。

这些芯片不仅用于训练DeepMind和Google Brain的模型,还用于支持谷歌翻译和谷歌照片中的图像识别的模型,以及允许公众使用谷歌的TensorFlow Research构建机器学习模型的服务。这些芯片的第三代产品于2018年5月在谷歌公司的I/O会议上发布,此后被封装到称为Pod的机器学习引擎中,该引擎可以每秒执行超过10万亿次浮点运算(100 petaflops)。这些正在进行的TPU升级使谷歌公司可以改善基于机器学习模型的服务,例如将训练谷歌翻译中使用的模型所需的时间减少一半。

机器学习的要素是什么?

如上所述,机器学习是人工智能的一个子集,通常分为两大类:有监督学习和无监督学习。

(1) 监督学习

训练人工智能系统的一种常见技术是通过使用大量带标签的例子来训练它们。这些机器学习系统被输入大量的数据,这些数据经过注释以突出感兴趣的特征。这些可能是照片,以表明它们是否包含书面句子或脚注,以表明“低音”一词是与音乐或鱼类有关。一旦经过训练,系统就可以将这些标签应用到新数据上,例如刚刚上传的照片中的一只狗。

(编辑:广安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读